Nonparametric Combinatorial Regression for Shape Constrained Modeling
نویسندگان
چکیده
منابع مشابه
A New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملConstrained Nonparametric Kernel Regression: Estimation and Inference
Abstract. Restricted kernel regression methods have recently received much well-deserved attention. Powerful methods have been proposed for imposing monotonicity on the resulting estimate, a condition often dictated by theoretical concerns; see Hall, Huang, Gifford & Gijbels (2001) and Hall & Huang (2001), among others. However, to the best of our knowledge, there does not exist a simple yet ge...
متن کاملBayesian Nonparametric Modeling for Multivariate Ordinal Regression
Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects which enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework e...
متن کاملNonparametric joint shape learning for customized shape modeling
We present a shape optimization approach to compute patient-specific models in customized prototyping applications. We design a coupled shape prior to model the transformation between a related pair of surfaces, using a nonparametric joint probability density estimation. The coupled shape prior forces with the help of application-specific data forces and smoothness forces drive a surface deform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2010
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2009.2028937